If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+88x-177=0
a = 9; b = 88; c = -177;
Δ = b2-4ac
Δ = 882-4·9·(-177)
Δ = 14116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14116}=\sqrt{4*3529}=\sqrt{4}*\sqrt{3529}=2\sqrt{3529}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(88)-2\sqrt{3529}}{2*9}=\frac{-88-2\sqrt{3529}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(88)+2\sqrt{3529}}{2*9}=\frac{-88+2\sqrt{3529}}{18} $
| 16;21=20/x | | 9-x=54+x | | 11.1+2y=y+1.1 | | -x^2-8=-28 | | X/7=3/4-5x/7 | | -2/1=0.6x | | -7y-8=-24-8y | | 4x+2(x-10=5x+4(9-x)+7 | | 4=(40-a)÷3 | | 8x-7=9x+16 | | 7/9v=49 | | 2m/9+7=4/3 | | -6y/5+1/2=1/2 | | -6y/5+1/2=-5/6 | | 200/p=5p-30 | | 7x=609 | | (2x+15)(3x-15)=0 | | 7x-9=10x+5 | | 3k+9=5 | | 4=2.5/t | | -3(2x+1)^2-21=0 | | 2/3(6x-1)=2 | | -3(2x+1)^21=0 | | 11y+1=9y-2 | | (2k−16)/(k-8)=((-4)/(k−4))+1 | | (7q+4)(q−7)=0 | | 2x^2-20x+95=0 | | 2x^2-20+95=0 | | 4(5x−2)=32 | | 3+(2x+1)-(4x-2)=18 | | 8x²+6x-5=0 | | 3/4-x/3=2x-1 |